
Introduction

Environmental studies often require analysis of various
attributes (concentrations of elements, compounds or
process rates) in large numbers of samples. Classical ana-
lytical methods are often time consuming, expensive,
require well-trained laboratory personnel and the use of
sophisticated equipment. Therefore, a good alternative for
complex classical methods is the use of indirect, less com-
plex methods that enable processing of large sample sets.  

Near infrared spectroscopy (NIRS) is a method that
could be used for analysis of soils, litter and plant materials
in environmental studies where large numbers of samples
must be processed. NIRS is a well-known analytical tech-
nique and has been adopted by the food industry and agri-
culture for several decades [1]. The method has been
applied to measure protein, moisture, ash, starch, water
absorption and several other properties in forage and ani-
mal feeds [2, 3]. Since the early 1990s NIRS has been used

as a certified method to measure moisture, crude protein
and acid detergent fiber in forages [4]. For several years
NIRS has also been tested for usefulness to analyze several
attributes of soils, sediments and other biological materials
(plant tissues, litter, composts etc.). The results of these
tests have been extensively reviewed by Malley et al. [5].
However, these authors have stated that the method still
remains unpopular in soil science and is rarely used in
research and commercial laboratories. One of the reasons
why NIRS is not widely used may be the fact that the
method is unknown to a considerable part of the soil and
environmental science community. 

This work presents principals of NIRS, its various
applications in environmental studies with particular
emphasis on soil and litter analysis, and critically reviews
the advantages and limitations of this method. The aim is
to stimulate interest in NIRS among soil scientists and
environmentalists. Detailed descriptions of NIRS method-
ologies, which might be of interest to experienced users of
the technique, is of less concern. In order to keep this
paper of reasonable length, numerous articles dealing with
NIRS application for soil analysis have not been cited.
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Readers interested in more detailed information on various
aspects of NIRS application in soil analysis should refer to
the review by Malley et al. [5] and those interested in theory
of calibration to eg. Martens and Næs  [6] or Næs et al. [7].

Principle of the Method

NIRS utilizes wavelengths between 750 and 2500 nm,
but this range is often extended to 400-2500 nm. Near
infrared radiation is absorbed by different chemical bonds
such as O-H, C-H, N-H, S-H and C=O. Absorption of NIR
radiation results in bending, stretching, twisting and scis-
soring of the bonds [8, 9]. 

The amount of NIR radiation that is absorbed is deter-
mined by the nature and number of bonds present in the
analyzed material. Hence, NIR spectra contain detailed
information on the chemical composition of that material
[10].

The NIR spectra do not contain sharp and distinct peaks
because they consist of overtones and combinations from
primary absorption in the mid-infrared region. These over-
tones are anharmonic and impede interpretation of NIR
spectra [8]. Since a direct interpretation of NIR spectra of
complex mixtures is extremely difficult, the application of
NIRS for analysis of environmental materials requires a
calibration procedure using sophisticated statistical tech-
niques [10].

Sample Preparation Requirements

The NIR spectra depend not only on chemical charac-
teristics of the analyzed material but also on its moisture
(due to strong absorption of water molecules at 1450 nm
and 1930 nm) and particle size [10, 11]. Therefore, in order
to ensure reliable NIR measurements samples need to be
dried carefully and ground to a consistent particle size. The
latter can be achieved by using laboratory grinders with the
same grinding performance. 

Calibration and Validation Procedures

The most essential step in the calibration procedure is
the selection of a proper sample set (Fig. 1). The calibration
sample set should cover the entire range of spectral varia-
tion in the whole population for which the calibration is
being carried out. Spectra that differ significantly from the
average spectrum should be rejected from the calibration
set as outliers. To identify outlier samples to be rejected, the
entire population is ranked in terms of Mahalanobis dis-
tance from the average spectrum. There are numerous
methods of selecting samples to be rejected, the CENTER
algorithm [12] being the most popular. Usually it is much
easier to achieve large spectral data sets, whereas obtaining
the reference data may be more time consuming. In order to
minimize the size of calibration sample set, and thus the
amount of necessary reference analyses, the samples in
which spectra are very similar may be rejected. Removal of
spectrally similar samples is based on the assumption that
only one sample is required to represent all samples in its

neighbourhood [12]. A SELECT algorithm, based on the
matrix of Mahalanobis distances between all pairs of spec-
tra, can be used to identify neighbouring samples [12]. 

The samples selected for calibration should cover not
only the entire spectral variation of the analyzed population
but also the entire variability of the components or charac-
teristics for which the calibration is carried out. Therefore,
sometimes it is necessary to expand the calibration set by
the samples not included in the calibration set chosen
according to the CENTER and SELECT algorithms.  

Calibration procedure relies on developing a regression
equation between the absorbance spectra and the compo-
nents or characteristics of interest. The most commonly
used regression procedures include multiple linear regres-
sion (MLR), principal component regression (PCR), partial
least square regression (PLS) and modified PLS regression
(mPLS). The two latter methods are considered more pow-
erful since – unlike the MLR – they use the entire spectral
information. The other available approaches involve neural
networks and wavelet theory [10]. Prior to the calibration
the spectra should be corrected for a scatter by any avail-
able methods (e.g. Detrend and Standard Normal Variate or
Multiplicative Scatter Correction). For development of cal-
ibration equations several mathematical treatments of spec-
tra are usually used. These include taking derivatives of 1st

to 3rd order, defining the segment length over which the
derivative is to be calculated and smoothing the spectra.
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Fig. 1. A scheme of NIRS application.



Since there is no single “best” treatment for all variables
and all sample types, usually the only way to optimize the
mathematical treatment is to follow a trial and error proce-
dure [13-15]. In order to avoid overfitting, when using
PCR, PLS or mPLS methods for model development, a
procedure called cross-validation should be used. The
cross-validation approach enables us to determine an opti-
mal number of terms or principal components to be includ-
ed in the model. The calibration sample set is divided into
several groups and a prediction is made for one group based
on calibration equation developed from the remaining
groups. This procedure is repeated until all groups are used
for validation once. The residuals of the predictions are then
pooled to calculate the standard error of cross-validation
(SECV). The best model should have the smallest SECV.
Although cross validation may help in selecting the number
of PC or PLS components it should not be used blindly.
Further statistical tests should be applied to assess perfor-
mance and relevance of the developed models and to detect
irregularities in the data (eg. outliers) that may harm devel-
oped regressions. Detailed descriptions of calibration pro-
cedures are given in Næs et al. [7] and Wold et al. [16].    

Quality of the developed calibration equations is
assessed in the validation stage (Fig. 1). The validation
sample set includes the samples for which the reference
data were measured using classical methods. During vali-
dation the NIRS predicted values are regressed against the
reference values. The quality criteria include correlation
coefficient (r2) and regression coefficient (a) of linear
regression measured against NIRS predicted values and
standard error of prediction (SEP). SEP is calculated
according to the equation:

SEP=[Σi=1...n (yi-xi)2(n-1)-1]0.5

...where n is the number of samples, yi is the mean value of
a constituent in sample i derived by the reference method,
and  xi is the NIRS predicted mean value for the sample i.

The other commonly used quality parameters include
ratio of standard deviation (SD) of the laboratory results to
SEP (RPD) [17] and the ratio of standard error of calibra-
tion (SEC) to SD [15]. The use of RPD and SEC to SD ratio
enables us to compare the accuracy of the models for con-
stituents that are measured in different units. 

Proper validation is a prerequisite for using the devel-
oped calibration models in routine analysis. It is essential to
use for validating entirely independent samples, otherwise
predictive accuracy of the developed models may be over-
estimated [18]. Furthermore, validation should simulate the
intended model application. For instance, in regional mod-
els, randomly selected, independent, hold-out sites should
be used for validation.  

When the number of available samples is too restrictive
to carry out calibration and independent validation, the
results of cross-validation may be used to assess the quali-
ty of calibration equations [19]. In cross-validation the
quality criteria include SECV, values of r2 (reference vs
NIRS predicted values), bias (mean of the NIRS predicted
value less the mean of reference values), and the SD to

SECV ratio (referred to as RPD or RSC) or standard error
of calibration (SEC) to SD ratio [15]. 

Relationships between Wavelengths 

and Chemical Structures 

Linking particular NIR wavelengths to well-defined
compounds is an extremely difficult task. Due to the broad-
band nature of NIR spectra, consisting of overlapping
peaks, the individual chemical structures are not well
resolved. Numerous constituents of analyzed materials
absorb within the entire NIR region and the spectral infor-
mation is repeated through successive overtones and com-
binations [2]. Despite these difficulties, there were some
efforts to find absorptions characteristic for certain com-
pounds [20-22]. Elvidge [20] analyzed the spectra of vari-
ous plant materials and reported NIR spectral features for
several compounds such as holocellulose (2100 nm, 2280
nm and 2340 nm), lignin (2050 nm and 2140 nm) and tan-
nin (1660 nm and 2130 nm). Shenk and Westerhaus, [23]
reported the region 2100 nm – 2200 nm to correspond to N-
H stretching in amide bonds and many calibration equa-
tions for crude protein have used the wavelengths of this
region. The presented wavelength-compound relationships
are ambiguous (e.g. absorption around 1650 nm can be
attributed not only to tannins but also to lignin [10]) and
assigning wavelengths to components of interest still
remains an important research goal. 

Applications of NIRS for Analysis of Soils,

Sediments and Plant Materials

Assessment of C and N Contents 

One of the first applications of NIRS in soil science was
determination of C and N in soil samples. Dalal and Henry
[24] applied successfully NIRS to assess organic C (r2 =
0.93, SEP = 0.2%) and total N (r2 = 0.93, SEP = 0.02%) in
Australian soils with low C content (0 to 2.6%). They used
MLR for calibration and the selected wavelengths were
1744 nm, 1870 nm and 2052 nm for C and 1702 nm, 1870
nm and 2052 nm for N. The limitations of NIRS found in
this study were poor predictions of C and N in the samples
with low organic matter (C < 0.3%) and erroneous predic-
tions in red earths due to colour interference. It was con-
cluded that NIRS could be used for routine analysis of soils
within moderate C concentrations and narrow range of soil
colours. Morra et al. [25] also applied the MLR method to
calibrate NIRS for C and N analysis in soils and soil frac-
tions with organic matter content ranging from 0 to 8%.
These authors used six different wavelengths to built cali-
bration models and reported good results of calibration (C:
r2 = 0.93 – 0.96 , SEP = 3.2 – 5.9 g kg-1; N: r2 = 0.89 – 0.94,
SEP = 0.4 – 0.6 g kg-1). However, two limitations of NIRS
have been emphasized: the necessity of having large sam-
ple sets for calibration and the necessity of using defined or
closed sample populations. Ben-Dor and Banin [26] used
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MLR method with six wavelengths to predict OM content
in 91 Israeli soils and reported poorer prediction of organic
matter content (r2 = 0.55, SEP = 1.3%). These authors
claimed that the reason for poorer prediction was the pres-
ence of two groups of soils within their calibration set: soils
with low OM content (0-4%) and high OM content (4-14%). 

In a number of studies (Table 1) NIRS has been report-
ed to predict accurately the contents of organic C and total
N over a wide range of their concentrations in arable and
forest soils [15, 17, 27-31], soil fractions [32], forest litter
and plant materials [33, 34] as well as fresh water sediments
[35, 36]. 

Organic C and total N are known to correlate strongly
in soils. In order to test whether the prediction of total N is
due to its correlation with organic C or is based on spectral
features of N containing groups Chang and Laird [37] car-
ried out a study with artificial samples made of three soil
series mixed with CaCO3, humic acid and compost materi-
al. These authors reported good predictions of total C (r2 =
0.91, SEP = 6.53 g kg-1), organic C (r2 = 0.89, SEP = 6.20 g
kg-1), inorganic C (r2 = 0.96, SEP = 6.53 g kg-1) and total N
(r2 = 0.86, SEP = 6.53 g kg-1). They also found that predic-
tions of total N for soils are based not on the correlation
between C and N but rather on the independent response of
incident radiation to soil N. 

Prediction of N Mineralization in Soils 

NIRS has been extensively applied not only to measure
the contents of organic C and total N but also to study trans-
formations of these elements in soils [38]. Special attention
was paid to soil N being one of the most important plant
nutrients. Fystro [28] applied NIRS to predict N mineral-
ization during 220 days of incubation in 80 grassland sam-
ples of heterogeneous origin and reported good predictions
for the release of mineral N after 50 and 220 days (r2 = 0.85-
0.84, SEP = 8.6 mg mineral N kg-1). The predictions using
NIRS were better than those with other methods based on
lost ignition, total N or hot KCl-extracable N. Similarly,
good prediction was reported by Russell et al. [39] for gross
N mineralization after 21 days of incubation (r2 = 0.79,
SECV = 16 mg N kg-1). Ludwig et al. [29] presented satis-
factory results for N mineralization in forest soils after incu-
bation over 53 and 264 days (r2 = 0.64 - 0.83, SEP = 32.3-
77.6 mg N kg-1). On the contrary, Terhoeven-Urselmans et
al. [40] reported inaccurate prediction of N mineralization
in soil and litter samples as indicated by small ratio of stan-
dard deviation of the laboratory results to standard error of
cross-validation (RSC = 0.9). The poor prediction probably
resulted from the low number of calibration samples 
(n = 30). 

There were attempts to use NIRS for predicting N
uptake by plants: however, the results were contradictory.
Russell et al. [39] reported satisfactory predictions of  N
uptake by rice (Oryza sativa cv. Amaroo) for plants grown
in a glass house (r2 = 0.76, SECV = 13 kg ha-1), whereas N
uptake by rice grown in the field was predicted unsatisfac-
torily (r2 = 0.33. SECV = 17 kg ha-1). Similarly, in the study

of van Groeningen [41] prediction of N uptake by rice was
unsatisfactory (r2 = 0.19, SEP = 6.4 kg N ha-1). The failure
in the field trials was assigned to varying environmental
conditions (temperature, solar radiation) that affected N
mineralization, plant growth and N demand. On the con-
trary, Börjesson et al. [42] reported good prediction (r2 =
0.81, SEP = 15.7 kg N ha-1) of N uptake by winter wheat
grown in the fields of one farm in southwestern Sweden.
These authors used only 12 samples; however, their results
were confirmed by Stenberg et al. [43], who used 75 sam-
ples taken in two Swedish fields over several years. In their
study the models based on NIRS were better than those
based on the organic C content and enabled reasonable pre-
dictions of N uptake (r2 = 0.61, SEP = 12.6 kg N ha-1).
Stenberg et al. [43] concluded that NIRS has the potential
to estimate N-uptake in crops and could be used to classify
mineralization zones within fields with high variation of in-
organic matter content. Considering the large number of
factors affecting N mineralization and uptake, the develop-
ment of reliable models would require large sample sets.
Thus, the application of NIRS to delimit mineralization
zones within fields would be a more successful approach
than prediction of absolute N-uptake [43].   

Prediction of Chemical Composition 
of Organic Matter

Knowledge of the composition of C in litter and soil is
often required for estimation of C dynamics in ecosystems.
NIRS could theoretically be used to study chemical com-
position of soil and litter organic matter. However, there are
only a few studies on such an application of NIRS.
Henderson et al. [44] fractionated organic matter of arable
soils from Indiana into several components, including
crude organic matter, crude humic acids, crude fulvic acids,
purified humic acids and purified fulvic acids. They found
NIR spectra to contain useful information on soil organic C
content, but not on the composition of organic matter. More
encouraging results have been presented recently by
Terhoeven-Urselmans et al. [4], who applied NIRS to pre-
dict organic matter composition of in soil and litter sampled
at various locations in Germany, Denmark and Norway.
13C-NMR analysis was used as a reference method for
organic matter composition and CuO oxidation determina-
tion of the lignin content. NIRS predicted well or satisfac-
torily (r2 = 0.61-0.90, RSC  = 1.5-3.1) the NMR character-
istics of the analyzed materials (contents of carbonyl C, aro-
matic C, O-alkyl C and alkyl C as well as alkyl C/aromatic
C ratio and alkyl/O-alkyl C ratio) and very well the lignin
content (r2 = 0.96, RSC = 2.3). NIRS seems to be a promis-
ing method for characterization of chemical composition of
soil and litter samples, but more studies on such applica-
tions are required.      

Litter Decomposition Studies 

Within a climatic area the chemical composition of lit-
ter is the most important factor determining its decomposi-
tion rate. The ability of NIRS to predict complex organic
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compounds has been widely tested in decomposition stud-
ies (Table 1). Martin and Aber [45] applied NIRS with MLR
as the calibration method to predict successfully lignin (r2 =
0.83, SEP = 1.69%), cellulose (r2 = 0.69, SEP = 3.45%) and
N (r2 = 0.90, SEP = 0.13%) in fresh leaves of 17 deciduous

and coniferous plant species. Similar results were reported
by McLellan et al. [46] for decaying leaves of 12 different
species. These authors also used the MLR method to build
calibration equations and obtained satisfactory predictions
for lignin and cellulose (r2 = 0.84-0.87; SEP = 3% for both
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Attribute Sample Error estimate R2 RPD Reference

C; % Soils SEP = 0.2 0.86 - [24]

C; mg�g-1 Soil fractions SEP = 6.2 0.93 – 0.96 - [25]

C; mg�g-1 Forest soil SEP = 5.5 0.88 2.8 [31]

C; mg�g-1 Forest soil O horizon SEP = 24 0.94 - [34]

C; mg�g-1 Grassland soil SEP = 5.7 0.87 2.7 [28]

C; % Forest soils SEP = 1.6 0.99 9.7 [15]

C; mg�g-1 Arable soil fractions SEP = 0.9 – 2.5 0.80 – 0.90 2.2 – 3.2 [32]

C; mg�g-1 Soil mixtures SEP = 6.20 0.89 4.2 [37]

C; mg�g-1 Soils SEP = 7.86 [17]

C; mg�g-1 Freshwater sediment SEP = 3.95 0.99 9.34 [36]

C; mg�g-1 Mixed samples (soil and plant materials) SECV = 90 0.94 1.8 [40]

C; % Plant materials SECV = 0.28 – 1.07 0.86 – 0.99 2.5 – 6.4 [33]

C; mg�g-1 Soils SEC = 2.2 0.91 - [55]

N; mg�g-1 Forest soils SEP = 0.4 0.88 2.8 [31]

N; g�g-1 Grassland soils SEP = 0.49 0.80 2.1 [28]

N; % Forest soils SEP = 0.08 0.98 6.8 [15]

N; mg�g-1 Soil mixtures SEP = 0.36 0.86 3.1 [37]

N; mg�g-1 Soils SECV = 0.62 0.85 2.5 [17]

N; mg�g-1 Freshwater sediment SEP = 0.508 0.99 9.4 [36]

N; mg�g-1 Soil and plant mixtures SECV = 3.29 0.92 2.0 [40]

N; mg�g-1 Plant materials SECV = 0.42 – 0.71 0.94 – 0.98 2.7 – 6.5 [33]

N mineralized after 50 to
220 days; mg�kg-1 Grassland soils SEP = 0.76 – 0.88 0.75 – 0.84 2.0 – 2.4 [28]

N mineralizable; mg�kg-1 Rice soils SECV = 16 0.79 - [39]

P; mg�g-1 Freshwater sediments SEP = 0.069 0.97 6.0 [36]

P; mg�g-1 Forest soil O horizon SEP = 0.1 0.74 - [34]

P; mg�g-1 Plant materials SECV = 0.05 – 0.06 0.94 – 0.95 2.7 – 4.1 [33]

Cmic; mg�g-1 Forest soils SEP = 0.11 0.81 2.2 [31]

Cmic; mg�g-1 Forest soils SEP = 0.55 0.96 4.4 [15]

Cmic; mg�g-1 Soils SECV = 0.39 0.60 1.5 [17]

Cmic; mg�g-1 Soil and plant mixtures SECV = 3.85 0.58 1.1 [40]

RESP; µgC h-1 g-1 Forest soils SEP = 0.2 0.77 2.1 [31]

RESP; µgC h-1 g-1 Forest soil O horizon SEP = 9.6 0.76 - [34]

RESP; µgC h-1 g-1 Soil SECV = 23.55 0.82 2.3 [17]

Table 1. Application of NIR spectroscopy for analysis of different properties of soil, litter and plant materials.



636 Chodak M.

Attribute Sample Error estimate R2 RPD Reference

Lignin; % Plant materials SEP = 3.03 0.76 - [46]

Lignin; % Plant materials SEP = 1.69 0.83 - [45]

Lignin; % Plant materials SECV = 2.58 0.96 - [47]

Cellulose; % Plant materials SEP = 2.90 0.71 - [46]

Cellulose; % Plant materials SEP = 3.45 0.69 - [45]

Litter Mass Remaining; % Plant materials SEP = 4.46 0.93 - [48]

Litter Mass Loss after
1 to 8 weeks; %

Plant materials SECV = 1.32 – 5.84 0.97 – 0.98 3.0 – 3.5 [49]

CEC; cmol kg-1 Forest soils SECV = 14 0.96 5.3 [54]

CEC; cmol kg-1 Soils SECV = 3.82 0.81 2.3 [17]

CEC; cmol kg-1 Arable soils SEP = 1.36 0.83 2.4 [41]

CEC; cmol kg-1 Soils SECV = 2.6 0.95 - [55]

Caex, cmol kg-1 Soils SECV = 4.00 0.75 1.9 [17]

Caex, cmol kg-1 Forest soils SECV = 1.59 0.96 2.9 [54]

Caex, cmol kg-1 Soils SEP = 2.2 0.94 - [55]

Mgex, cmol kg-1 Soils SECV = 1.28 0.68 1.8 [17]

Mgex, cmol kg-1 Forest soils SECV = 0.16 0.98 4.7 [54]

Mgex, cmol kg-1 Soils SEP = 0.8 0.91 - [55]

Kex, cmol kg-1 Soils SECV = 0.42 0.55 1.4 [17]

Kex, cmol kg-1 Forest soils SECV = 0.07 0.88 2.3 [54]

Kex, cmol kg-1 Soils SEP = 0.25 0.66 - [55]

Base saturation; % Forest soils SECV = 4.4 1.00 4.8 [54]

Zn; mg kg-1 Forest soils SECV = 8.0 0.96 3.2 [54]

Zn; mg kg-1 Polluted soils SEP = 526 0.67 - [58]

Cu; mg kg-1 Forest soils SECV = 0.6 0.98 3.4 [54]

Cu; mg kg-1 Polluted soils SEP = 10.3 0.61 - [58]

Cd; mg kg-1 Forest soils SECV = 0.06 0.81 1.4 [54]

Cd; mg kg-1 Polluted soils SEP = 5.13 0.54 - [58]

Pb; mg kg-1 Forest soils SECV = 11.4 0.81 1.8 [54]

Pb; mg kg-1 Polluted soils SEP = 839 0.45 - [58]

Sand; % Soils SECV = 11.9 0.82 2.3 [17]

Sand; g kg-1 Soils SEP = 61 0.91 - [55]

Sand; % Soils SECV = 5.9 0.73 2.2 [56]

Silt; % Soils SECV = 9.5 0.84 2.5 [17]

Silt; g kg-1 Soils SEP = 39 0.79 - [55]

Silt; % Soils SECV = 5.8 0.80 2.3 [56]

Clay; % Soils SECV = 4.1 0.67 1.7 [17]

Clay; g kg-1 Soils SEP = 54 0.88 - [55]

Clay; % Soils SECV = 3.2 0.90 3.0 [56]

Table 1. (continued).



constituents) and very good for total N (r2 = 0.94, SEP =
0.2%). In both studies four wavelengths were used in cali-
bration equations, but they differed between studies. For
instance, for lignin estimation Martin and Aber [45] used
the absorptions at 1648 nm, 2078 nm, 2260 nm and 2330
nm, whereas McLellan et al. [46] used the absorptions at
1438 nm, 1708 nm, 2154 nm and 2320 nm. 

Joffre et al. [47] used NIRS to predict acid-detergent
fibre, acid-detergent lignin, ash content and the contents of
C and N in the litter of 8 evergreen and deciduous broad-
leaved trees, conifers and shrubs. They applied two calibra-
tion methods – MLR and PLS. Both methods yielded
acceptable results for C, N and ash content, but for acid-
detergent fibre and acid-detergent lignin PLS gave more
accurate predictions, indicated by lower SECV values. 

The litter mass loss (expressed as the percentage of ash-
free litter mass remaining  – LMR) was studied for leaf lit-
ter of 10 different species with varying initial chemical
composition and at different decomposition stages [48].
The experiments were carried out in laboratory under con-
trolled conditions (incubation for 14 months at 22ºC and
moisture of 80% of field water holding capacity) and in the
field using litterbags. Calibrations were developed only
with a part of samples incubated in the laboratory. For the
calibrations the entire spectra (400-2500 nm) were used
with the exception of the part that corresponds to water
(1948 nm-1968 nm). The developed calibration equations
were validated against another part of samples incubated in
the laboratory and also against the samples from the field
experiment. The LMR in the laboratory and the field exper-
iment ranged from 22% to 100% and was predicted very
well for the samples from laboratory incubations (r2 = 0.98,
SEP = 3.53%). The LMR in the field experiment was pre-
dicted less accurately, but still with satisfying accuracy (r2 =
0.93, SEP = 4.46%). In a further study, Gillon et al. [49]
found that litter decomposability (LMR values and the
decay constants of litter materials) of 34 various plant
species was better related to their initial NIR spectra than to
their other characteristics (contents of C, N, hemicellulose,
cellulose and lignin). The equations developed for ash,
lignin, cellulose, hemicellulose, P, N and litter decomposi-
tion index [33, 47-49] were used to study chemical changes
in the leaf litter consumed by Glomeris marginata [50]. In
this study, NIRS provided in a single operation the charac-
teristics of the food and faeces for all the calibrated attrib-
utes. 

Recently, NIRS has been applied to determine water
soluble (WEP) and total extractable polyphenolics (TEP)
in biomass, necromass and decomposing plant material
[51]. Calibrations were developed for two data sets differ-
ing in their spectral characteristics. The first set included
decomposing plant material and the second one contained
undecomposed material. In each set 84 to 94 samples were
used for calibration and 90 to 95 samples for validation.
The contents of WEP and TEP in both sets varied over a
wide range (WEP: 0.24-95.15 g kg-1 in decomposing mate-
rial and 2.09-233.28 g kg-1 in undecomposed material,
TEP: 0.70-157.83 g kg-1 in decomposing material and
5.97-321.17 g kg-1 in undecomposed material). In both sets

NIRS spectroscopy predicted well the contents of WEP (r2

= 0.92-0.94, SEP = 2.39-11.1 mg kg-1) and TEP (r2 = 0.88 in
both sets, SEP = 7.11-22.0 mg kg-1). The authors concluded
that NIRS could allow performing of large screening for
studies on polyphenolic control on decomposition process
and polyphenolic implication in herbivory and adaptive
mechanisms of plants. 

Prediction of Phosphorus

Phosphorus is one of the most important plant nutrients.
Its concentration may also affect the decay rate of litter. In
sediments the concentration of P is often measured due to
its role in the eutrophication process. There were several
attempts to use NIRS for P determination in litter, soil and
sediments. Very good results of total P determination were
reported by Malley et al. [35, 36] for freshwater sediment
samples (r2 = 0.97, SEP = 0.069 mg g-1) and by Gillon et al.
[33] for pine needles at different stages of decay (r2 = 0.94-
0.99, SECV = 0.06 – 0.08 mg g-1). Chodak et al. [34] report-
ed satisfactory prediction of total P in forest humus samples
(r2 = 0.74, SEP = 0.1 mg g-1). The results for P analysis in
mineral soils were less encouraging. In the study of Ludwig
et al. [29] NIRS failed to predict Bray II P contents, Olsen
P contents and long-term available P (r2 = 0.29-0.59) in dis-
turbed Australian forest soils. Similarly, Ben-Dor and
Banin [52] reported only poor prediction performance of
NIRS for P2O5 in Israeli soils. Phosphorus, unlike C and N,
does not absorb NIR radiation. Therefore, its prediction
relies on the correlation with soil constituents absorbing in
this spectral range. In soils P may exist in organic and inor-
ganic forms. Probably only the organic forms of P may be
predicted by NIRS, whereas the inorganic ones cannot.
Thus, in mineral soils, were the contribution of inorganic P
may be high, NIRS is not useful for determination of P con-
tents.

Prediction of Cation Contents 
and Cation Exchange Capacity 

Similarly to P, metal cations do not absorb NIR radia-
tion. However, constituents which do not absorb NIR radi-
ation can be predicted owing to their correlations with spec-
trally active constituents [52]. Cozzolino and Moron [53]
reported satisfactory predictions (r2 = 0.76-0.83) of Na, Zn,
Mn and Cu concentrations in lucerne and white clover sam-
pled in Uruguay. Only the prediction of Fe in these samples
was unsatisfactory. NIRS was tested to predict total con-
tents of Na, K, Ca, Mg, Fe and Al in organic horizons of
soils under beech, spruce and mixed beech-spruce forest
stands [34]. Some of the samples were taken at forest stands
that were limed (with CaCO3 or dolomite) in order to
decrease soil acidification. Predictions of all metals except
Ca and Mg were good or satisfactory (r2 = 0.71-0.94).
Prediction of Ca and Mg was worse because of the presence
of the samples containing large Ca and Mg contents.
Probably, the application of lime changed the natural corre-
lations between organic C and the contents of Ca and Mg.
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The whole data set was further divided into two groups rep-
resenting limed samples and those not influenced by lim-
ing. NIRS predicted well and satisfactorily concentrations
of Ca and Mg in the samples which did not receive lime (r2

= 0.83 and 0.77, respectively), but was not able to predict
concentrations of these elements in the samples from limed
sites. 

Very good predictions of total and exchangeable Na, K,
Ca, Mg, Mn, Fe and Al (r2 = 0.88-1.00) in geologically het-
erogeneous mineral soils under beech stands in Germany
were reported by Chodak et al. [54]. Similarly, Shepherd
and Walsh [55] presented successful predictions of
exchangeable Ca and Mg (r2 = 0.94 and 0.91, respectively)
in a large sample set of African soils. In both these studies
also cation exchange capacity (CEC) was predicted very
well (r2 = 0.91-0.96). CEC in soils (in particular those rich
in organic C) is strongly related to NIR absorbing function-
al groups of organic matter (COOH, OH etc.). Thus a good
prediction of CEC using NIRS is expected. 

NIRS has been applied also to determine heavy metals
in soils and sediments [54-59]. Successful predictions of
total Cu (r2 = 0.87, SEC = 0.7 mg kg-1) and Zn (r2 = 0.72,
SEC = 1.2 mg kg-1) in arable soils were reported by Moron
and Cozzolino [56]. In forest soils NIRS predicted well the
contents of Zn (r2 = 0.98, SEP = 6.75 mg kg-1), Cu (r2 = 0.95,
SEP = 1.43 mg kg-1) and Pb (r2 = 0.98, SEP = 4.36 mg kg-1)
[54]. However, in both these studies unpolluted soils were
used. Kooistra et al. [57] successfully applied NIRS to pre-
dict Cd and Zn concentrations in metal-contaminated Rhine
floodplains; however, they rejected the samples with the
largest heavy metal content as not representative of the
entire sample population.  This approach seems to be unap-
plicable for measurement of metal cations in samples from
industrial regions since the concentration of heavy metals
may be extremely high at sites close to emitters. The abili-
ty of NIRS to predict heavy metal contents in heavily pol-
luted arable soils from Upper Silesia has been tested in the
study of Siebielec et al. [58]. NIRS tended to underestimate
the highest contents of Cd, Cu, Pb and Zn and the predic-
tion performance was rather poor [58]. The poor prediction
of heavy metals at their highest concentrations was
assigned to industrial contamination. Indeed, in industrial
areas deposition of heavy metal-containing dusts may be an
important source of pollution. The deposited heavy metals
may not be related to organic matter quantity or quality, so
they may be invisible to NIRS and be undeterminable by
this method.

Microbial Biomass and other 
Microbial Properties

NIRS has been applied to measure microbial biomass
(Cmic) and respiration in soils. These parameters were suc-
cessfully described in the sieved mor humus of boreal
forests [60], where NIRS explained 93%-98% of the vari-
ability of basal respiration and 89% of substrate-induced
respiration (SIR). In the study of Pietikainen and Fritze [61]
NIRS explained 75% of the variance in Cmic measured by

SIR and 62% of the variance in basal respiration of organic
horizons of boreal, mixed spruce-pine forests. The major
shortcoming of these studies was the low number of sam-
ples (n = 30 in [60]; n = 12 in [61]). However, the ability of
NIRS to predict microbial biomass and soil respiration has
been confirmed in several studies with a much larger num-
ber of samples [15, 17, 29, 34]. In all these studies, NIRS
yielded satisfactory models for the prediction of respiration
(r2 = 0.60-0.76) and for microbial C measured either by SIR
of CFE method (r2 = 0.60-0.96). It is noteworthy that the
prediction of microbial C or respiration was always less
accurate than of C or N contents and that a very good model
was achieved only once [15]. The worse prediction of
microbial biomass and respiration is due to the fact that bio-
logical characteristics of samples depend not only on organ-
ic matter chemistry which is contained in NIR spectra of
soils but also on other factors such as pH, temperature,
moisture and micronutrients. These factors may weaken
relationships among NIR spectra and biological parame-
ters, thus decreasing predictive performance of NIRS. 

Recently, Terhoeven-Urselmans et al. [40] reported
NIRS to fail predicting microbial biomass and DOC pro-
duction in soil and litter samples. However, these authors
used only a small number of samples to build calibration
equations (n=30) and the sample set was extremely diverse.
They concluded that in order to reliably predict microbial
properties of soils the sample population must be large
enough, sufficiently diverse and cover the entire variability
of spectral information.  

Texture of Soils

NIR spectra depend on particle size of the analyzed
materials. This enables prediction of texture of analysed
samples. Moron and Cozzolino [56] predicted satisfactori-
ly contents of sand (r2 = 0.82, SECV = 5.9%), silt (r2 = 0.82,
SECV = 6.0%) and clay (r2 = 0.90, SECV = 3.2%) in 332
mineral soils from Uruguay. Similar  results were reported
also by Chang et al. (2001) [17] for 800 samples of
American soils (r2 = 0.82, 0.84 and 0.67 for sand, silt and
clay, respectively) and by Shepherd and Walsh (2002) [55]
for more than 1000 samples of different African soils (r2 =
0.76, 0.67 and 0.78 for sand, silt and clay, respectively).  

Other Applications

Prediction of different constituents in soils, litter and
plant materials remain the main application of NIRS; how-
ever, there are several other methods of NIRS utilization.
NIRS can be used for objective and rapid selection of sam-
ples from large populations [62]. Depending on the goal of
research only similar or extreme samples from the entire
sample population can be chosen for expensive and com-
plex analyses. NIRS may be used to evaluate spatial varia-
tion of soils [63]. When coupled with GIS techniques NIRS
may help to produce detailed soil maps for precision farm-
ing [64]. 
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The use of portable NIR devices for field measurements
of certain soil constituents (e.g. content of organic matter or
N) would be of great interest. Experiments with a portable
NIR devices have already been carried out but the obtained
results were poor. Sudduth and Hummel [65] developed
portable NIR spectrometer with a sensing range between
1650 and 2650 nm and optical bandwidth of under 55 nm.
Laboratory calibrations and validations for soil organic
matter content were successful (SEP = 0.4%) but in-furrow
field operation yielded unsatisfactory results. The failure
was probably due to the movement of soil beyond the sen-
sor during data acquisition. 

NIR spectroscopy may be a useful tool in Imaging
Spectroscopy (IS). IS uses airborne or satellite-based
hyperspectral sensors to spatialize the spectral information
[66]. This method may be applied to produce fine-scale
maps of physical and chemical soil characteristics. Stevens
et al. [66] applied a Compact Airborne Spectrographic
Imager (spectral range: 405-950 nm) to assess carbon stock
change in agricultural soils in Belgium. However, they
obtained unsatisfactory results since the SEP (7.2-9.9 Mg C
ha-1) was too high in comparison with changes in SOC
stocks resulting from management or land conversion. The
authors concluded that careful monitoring of disturbing fac-
tors and the use of sensors covering a wider spectral range
is needed to decrease the detection limit of the method.
Better results were reported by Selige et al. [67], who used
a HyMapTM scanner (spectral range: 420-2480 nm) to pro-
duce fine-scale maps of Corg, Nt, sand and clay contents in
soils of Eastern Germany. In order to exclude the effects of
soil surface roughness and moisture, only bare soil fields
were selected and the flight campaign was organized after
a period of dry weather. The spectroscopic data were com-
bined with field data using PLSR or MLR and the devel-
oped models used to produce fine-scale maps of the con-
sidered soil properties in an 88 ha test field. The resolution
of the maps was high enough to detect spatial differences
in soil properties caused by historical activities. The
authors concluded that IS combined with multivariate
regression modelling can be a valuable tool to understand
the historical development of land using practices as well
as to contribute significantly to the goal of fine scale map-
ping.

Future of NIRS 

Future application of NIRS is related to its ability to
produce a large number of samples. This feature of NIRS
makes this technique a suitable tool for precision agricul-
ture and landscape-scaled environmental studies. The
method may help to produce detailed maps of soil proper-
ties. There are several ways NIRS may be applied for this
purpose. Airborne NIR spectrometers may be used for
remote sensing of soils as described in Stevens et al. [66].
Presently, the airborne measurements yield less accurate
estimations of soil properties than those with field or labo-
ratory spectrometers. This is due to several factors such as
variable soil moisture and roughness, microrelief of the
analyzed area and possible vegetation cover that interferes

with airborne measurements. The result of Selige et al. [67]
suggest that taking these factors into consideration while
planning a measurement campaign may increase the meth-
ods effectiveness. Another method of NIRS application in
precision agriculture is the use of portable spectrometers
built on farm machines. However, the results obtained by
Sudduth and Hummel [65] indicate a number of several
additional sources of errors (eg. movement, vibrations) that
deteriorate the quality of the analysis. The third method of
NIRS application in precision farming and environmental
studies is the classic laboratory approach. As NIR spec-
troscopy is a rapid and cost-effective technique, much
denser soil sampling is possible. A dense sampling com-
bined with powerful geostatistical techniques such as
Kriging may help to produce highly detailed maps of soil
properties. Additionally, using the laboratory approach it is
possible to detect vertical gradients of soil properties with-
in a soil profile and to produce three-dimensional maps
(models) of soil properties. 

Another field where NIRS may contribute considerably
is the research on soil organic carbon (SOC). NIRS has
been reported to accurately predict SOC contents. Thus the
method may be used to reduce costs of large soil carbon
inventory programs. However, NIRS could be used not
only to determine SOC content but also its quality. SOC is
an extremely complex mixture of plant, animal and micro-
bial residues at all stages of decay and various organic sub-
stances (eg. polysaccharides, fulvic and humic acids etc.).
The composition of SOC is an important property affecting
soil fertility. The reaction of SOC to external factors (eg.
changed climatic conditions) also depends largely upon its
composition. There are numerous methods to assess SOC
composition and quality, such as extractions with various
solvents, density fractionations, particle size fractionations,
etc. However, most of them are expensive, resource inten-
sive and time consuming. To date the studies on NIRS
application for SOC assessment have focused usually on
the quantity of soil C, whereas those addressing the issues
of SOC quality have been relatively scarce. The application
of NIRS to characterize SOC and to determine particular
pools of SOC should receive much more attention in future
research as this is a field where NIRS may help to save a lot
of costs and analytical effort.   

NIRS could be also applied for differentiation of
geogenic and recent C in the mine soils developing in areas
destroyed by lignite mining. These mine soils may contain
considerable part of lignite C [69] impeding proper moni-
toring of C accumulation and thus the assessment of the
reclamation success. NIRS is able to distinguish lignite C
and humus C [70] and potentially could be used to assess
accumulation of recent C in the mine soils. However, more
detailed tests are required to assess this application of NIRS
in environmental monitoring. 

Finally, NIRS might be used in geological studies or in
mine laboratories for testing the quality of organic commodi-
ties such as coals, lignites or peats. To date this application of
NIRS received only minor attention. Since the mine labora-
tories need to process vast numbers of samples each year,
the application of NIRS might be of great interest for them. 
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Conclusions 

Possibilities and Limitations of NIRS 

NIRS has been proven to be useful for predicting of a
number of physical, chemical and microbial properties of
soils, litter and plant materials. The method offers several
advantages such as rapidity of analysis, minimal prepara-
tion of sample, non-destructive analysis and no use of
reagents. The rapidity of NIRS enables a large number of
samples to be processed. The ability to predict various con-
stituents enables determination of numerous parameters of
analyzed material at one time. The presented results of
numerous studies indicate great potential of this method as
an analytical tool in large-scale environmental research.
However, NIRS should not be treated as a method for
assessment of nearly all constituents or a remedy for all
problems related to analysis of soils, litter or plants. The
method offers lots of advantages when good models are
developed, but the process of model building itself may be
complex. The reliable, global models can be developed
only when the nature of dependency between NIR spectra
and the constituents is fully understood. As this is not
always the case the main goal of future research should be
to identify robust and stable correlations between con-
stituents and spectra. Specific spectral features associated
with the constituents of interest should be identified and
appropriately modelled.  

One of the main limitations of NIRS is the necessity of
having defined or closed sample population. This means
that any calibration equations are valid only for the area or
sample population for which they were built and cannot be
used to predict constituents in samples from outside this
area or population. Any new samples must first be analyzed
with classical methods and then included in the calibration
set. A possible solution of this problem is building large and
diverse spectral libraries using archived samples [55].
Having large and diverse sample sets, it is possible to devel-
op robust calibration models applicable to samples from
large areas, thus increasing efficiency of expensive and
time-consuming environmental studies.  

Another serious limitation of NIR is the necessity to
perform calibrations with classical methods. Since NIR
spectra are calibrated with classical methods the quality of
NIRS predictions depends entirely on the quality of the
measurements used to develop the statistical model. Thus,
using erroneous reference measurements would result in
propagation of the errors and creation of unreliable predic-
tive models. In order to correct adverse effects of erroneous
reference data and to assess real NIRS predictive perfor-
mance, the reference value uncertainty should be included
in the assessment of NIRS model quality [68]. 

For reliable calibrations sometimes large numbers of
samples must be analyzed with classical reference methods.
This may limit the applicability of NIRS, in particular when
reference analyzes are expensive or complex and time-con-
suming. In such cases a thorough analysis of costs and
efforts should be carried out since the large initial effort
may  reward in the future when the developed models will
be used instead of the complex reference methods. 

Application of NIRS is worthwhile only when large
sample numbers are to be analyzed. Therefore, NIRS is not
expected to replace classical methods completely. Instead,
this method should be used alongside conventional analy-
ses to improve their efficiency and costs. 
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